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Abstract—Vendors are often provided with updated versions
of a piece of software, fixing known security issues. However, the
inability to have any guarantee that the provided patched software
does not break the functionality of its original version often hinders
patch deployment. This issue is particularly severe when the
patched software is only provided in its compiled binary form. In
this case, manual analysis of the patch’s source code is impossible,
and existing automated patch analysis techniques, which rely on
source code, are not applicable. Even when the source code is
accessible, the necessity of binary-level patch verification is still
crucial, as highlighted by the recent XZ Utils backdoor.

To tackle this issue, we propose VERIBIN, a system able
to compare a binary with its patched version and determine
whether the patch is “Safe to Apply”, meaning it does not
introduce any modification that could potentially break the
functionality of the original binary. To achieve this goal, VERIBIN
checks functional equivalence between the original and patched
binaries. In particular, VERIBIN first uses symbolic execution
to systematically identify patch-introduced modifications. Then,
it checks if the detected patch-introduced modifications respect
specific properties that guarantee they will not break the original
binary’s functionality. To work without source code, VERIBIN’s
design solves several challenges related to the absence of semantic
information (removed during the compilation process) about the
analyzed code and the complexity of symbolically executing large
functions precisely. Our evaluation of VERIBIN on a dataset of
86 samples shows that it achieves an accuracy of 93.0% with no
false positives, requiring only minimal analyst input. Additionally,
we showcase how VERIBIN can be used to detect the recently
discovered XZ Utils backdoor.

I. INTRODUCTION

Timely creation and deployment of security patches is
essential to protect programs against corresponding security
vulnerabilities [59]. However, studies [28], [47] show that
vendors take significant time to apply these security patches.
From the vendor perspective, applying patches involves
a risk of regression and breaking the existing program
functionality [24], [89]. Such regressions are expensive,
especially when affecting mission-critical embedded systems
such as aircraft and power grids. Consequently, vendors either
spend considerable time testing the patched version of a
program to ensure that it does not contain any regressions [12],

[15], [25], [31], or they may decide not to patch a system
even if it is affected by known vulnerabilities. This friction in
verifying patches results in a “patch gap” [55], [65], which is
detrimental to the security of the unpatched system, especially
if the underlying vulnerability is publicly known [48].

To handle the tension between the risk of regression and
the patch gap, we need techniques to verify that a given patch
neither affects the program’s functionality nor causes regression
and, consequently, is safe to apply. In this context, “safe” refers
to the preservation of functionality, rather than addressing
whether the code is affected by vulnerabilities. Existing patch
verification techniques, such as SPIDER [51] and SID [79],
require source code patches. However, when the code running
on a device is provided by a third party, such source code
patches are usually unavailable to vendors, who only receive
patched binaries. Furthermore, in old legacy systems, where
the exact source code version is lost, or the process for
building the software from source code is not documented
– binary-level patching is the only option [8]. Recently,
researchers have proposed many techniques [26], [32], [65],
[71], [82], [84], [87] to directly patch the program binaries, and
a few companies, such as 0Patch [9], offer binary-level patches
for unmaintained software. Obviously, patches generated in this
way cannot be verified using existing, source-code-based, patch
verification approaches. As demonstrated by the recent XZ
Utils backdoor [10], it is feasible to circumvent source-level
verification techniques by injecting malicious code directly
into the binary through a modified compilation pipeline.
This demonstrates the critical need for and importance of
binary-level patch verification, even when the source code is
accessible. This necessity has also been recently highlighted
by the DARPA AMP program [8], which emphasizes the
importance of binary patch verification and tasked several
researchers and organizations to develop such techniques.

Previous work (i.e., SPIDER [51]) has considered a patch as
“safe” if it only restricts a function’s accepted input space with-
out affecting its behavior for valid inputs, and it has formally
defined source-code-level properties that need to hold for a
patch to be considered as functionality-preserving. Our goal is
to aid the patch verification process by identifying, highlighting,
and verifying patch-introduced changes directly in binaries. We
aim to verify analogous properties, which we call Safe to Apply
(StA) properties, without the need for source code, by directly
comparing a patched binary with its original version. With the
term “safe”, our definition of StA emphasizes maintaining the
program’s original functionality, ensuring that the patch does
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not introduce regressions or alter intended behavior. It does
not, however, guarantee that the patch addresses the underlying
vulnerability. Evaluating semantic equivalence to determine
whether patches preserve the original functionality has been
previously explored by several source-level approaches [17],
[46], [51], [52], [78]. However, as we will show, the verification
of these properties at the binary level poses various challenges
that require our solution to differ significantly from source-code-
based solutions. Additionally, we make our verification “adap-
tive”, enabling analysts to assist in cases where automated verifi-
cation is infeasible since it requires domain-specific knowledge.

More precisely, given a binary patch (i.e., the original and
patched binaries) and the patch-affected function addresses,
we use under-constrained symbolic execution (Section V-B) to
explore all reachable paths in the affected functions. Then we
verify StA properties for corresponding path pairs in the original
and patched functions. This path-based verification also enables
us to be adaptive and use additional information an analyst
can potentially provide (Section V-D). Specifically, if we are
unable to verify certain properties automatically (e.g., because
it requires semantic reasoning), we perform introspection of
the corresponding symbolic constraint to identify the root
cause. This will be translated into a query on the patch that
an analyst can answer. We use the analyst’s response to
simplify symbolic constraints and verify the corresponding
property. Our design choices (Section V) aim to produce a
high-assurance system with zero false positives, such that any
patch considered StA by VERIBIN is always safe to apply.

We evaluate VERIBIN on three datasets with a total of 86
pairs of original and patched binaries whose sizes vary from
5KB to 120MB. Our evaluation shows that VERIBIN achieves
93.0% accuracy (i.e., the number of correctly identified patches
over the total number of patches) with an average of 1,293.8
seconds of runtime and does not generate any false positives.

In summary, we make the following contributions:
• We design VERIBIN, the first system capable of

describing patch behavior at the binary level and
determining whether the patched binary can be safely
deployed (i.e., it is functionality preserving). To this
aim, we formalize the definition of Safe to Apply (StA)
patches for binaries and define StA properties.

• We design an efficient, path-based technique to verify StA
properties. Our techniques reduce the analysis time by
75% compared to the standard approach.

• We also make our analysis adaptive so that analysts can
augment VERIBIN’s analysis by providing domain-specific
information, which is not available in the patched binary.

• We evaluate VERIBIN on 86 pairs of binaries coming
from three different datasets. Our results show that
VERIBIN can delineate patch behaviors with 93.0%
accuracy and no false positives. Additionally, we
showcase how VERIBIN can be used to detect the
recently discovered XZ Utils backdoor.

To foster further research in this field, we make VERIBIN
publicly available [11].

II. BACKGROUND

In principle, a patch to a binary is Safe to Apply (StA) if
it does not break the existing functionality. However, every
patch, unless empty, impacts the binary’s functionality in
some way. Nevertheless, certain patches, particularly security

patches [47], [64], only restrict the input space by adding
validation checks to reject invalid inputs, while preserving the
program’s behavior for valid inputs. As explained in previous
work [51], such input-restricting patches are StA. Therefore,
at the high level, we aim to verify that a given patch to a
binary is StA by ensuring that it restricts inputs and does not
affect the program’s behavior for valid inputs. Here, “safe”
specifically refers to maintaining the integrity of the program’s
original functionality, instead of focusing on whether the patch
addresses the underlying vulnerability.

A. Terminology
As mentioned before, our techniques will work at the binary

level and have access only to the original and the patched binary.
We will use the patch in Listing 1 as our running example
and x86-64 as the target architecture to explain our techniques.
Figure 1 shows the assembly level Control Flow Graph (CFG)
of the corresponding original and patched functions.
Original and Patched entities. We will use o and p to
indicate original and patched entities. For instance, for a
binary B, Bo and Bp represent the original and patched
binary, respectively. Similarly, Fo and Fp indicate the original
and patched functions of a function F , respectively.
Valid Exit Path (VEP) and Error-handling Exit Path (EEP).
We assume the CFG of a function has a single entry (i.e., no
predecessors) and multiple exit Basic Blocks (BBs) (i.e., no
successors). A complete path in a CFG starts at an entry BB
and ends at an exit BB. For instance, all the paths shown
in Figure 1 are complete paths. We consider all of a function’s
arguments as its “inputs”. Within a function, a Valid Exit Path
(VEP) is a complete path that the function execution takes only
on valid inputs. In other words, an input that follows a VEP
is a valid input, such as Po2 and Pp3 in Figure 1. Similarly,
an Error-handling Exit Path (EEP) is a complete path where
inputs that follow this path are considered invalid and are thus
rejected by the function, such as Po1, Pp1, and Pp2.
Path Constraint (PC). A path constraint (PC) is a condition
that must be met by a function’s input for the execution to
follow a specific path. For example, the path constraint of Po1 is
edi > 0x3ff. We denote the path constraint of a path k as Ck.

B. Identifying StA Patches
We start from previous work [51] to define a Safe to Apply

(StA) patch. Specifically, a patch is StA if it satisfies two
properties (StA properties): (i) It does not increase the valid
input space of the binary (non-increasing input space), and
(ii) The output of the patched binary remains the same as the
original for all the valid inputs (output equivalence). The first
property ensures that the patched program does not accept
any new input values, preserving the original input constraints.
The second property guarantees that the output of the patched
program will be identical to the original program for all valid
inputs, maintaining consistent functionality.

Given the original (Bo) and patched (Bp) binaries, our
goal is to verify that the patch applied to Bp is a StA patch
by verifying StA properties. We perform this verification at
the function level. Notably, we start by identifying the set of
functions modified by the patch and check that the changes
made to all these functions satisfy StA properties. A patch is
considered Safe to Apply for Fo and Fp if it satisfies the StA
properties. Further, a patch is considered StA for Bo and Bp if
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Original 

All Paths:
Po1: <BB1, BB2, BB4> 
Po2: <BB1, BB3, BB4>

All Paths:
Pp1: <BB1', BB2', BB4'>
Pp2: <BB1', BB5', BB2', BB4'>
Pp3: <BB1', BB5', BB3', BB4'>

0x1164
1164  mov  eax, [rbp - 8]
1167  mov  edi, eax
1169  call   0x1129 ; bar
116E  mov  edx, [rbp - 4]
1171  movsxd rdx, edx
1174  lea    rcx, [rdx * 4]
117C lea    rdx, [rip + 0x2ebd]
1183 mov  [rcx + rdx], eax
1186 mov  eax, 0

BB3'

0x115D 
115D mov  eax, -1
1162 jmp   0x118b

BB2'

Patched

0x118B
118B leave
118C ret

BB4'

113C endbr64
1140 push  rbp
1141 mov  rbp, rsp
1144 sub   rsp, 8
1148 mov  [rbp - 4], edi
114B mov  [rbp - 8], esi
114E cmp  [rbp - 4], 0x3ff
1155 jg   0x115d

BB1' 0x113C 

0x1157 
1157 mov  eax, -1
115C jmp   0x1185

BB2

0x1185
1185 leave
1186 ret

BB4

113C endbr64
1140 push  rbp
1141 mov  rbp, rsp
1144 sub   rsp, 8
1148 mov  [rbp - 4], edi
114B mov  [rbp - 8], esi
114E cmp  [rbp - 4], 0x3ff
1155 jle   0x115e

BB1 0x113C 

0x1157 

1157 cmp  [rbp - 4], 0
115B jns   0x1164

BB5'
0x115E

115E  mov  eax, [rbp - 8]
1161  mov  edi, eax
1163  call   0x1129 ; bar
1168  mov  edx, [rbp - 4]
116B  movsxd rdx, edx
116E  lea    rcx, [rdx * 4]
1176 lea    rdx, [rip + 0x2ec3]
117D mov  [rcx + rdx], eax
1180 mov  eax, 0

BB3

Fig. 1: The Control Flow Graph (CFG) of the original and patched function in Listing 1. The instructions marked with blue denote the
output of the function. The green basic blocks are matched blocks while the white basic block indicates the unmatched block. If a basic
block has multiple out-going edges, we use the green and red edges to represent the true and false branches, respectively.

1 #define MAX_SIZE 1024
2 int data[1024];
3 int foo(int a, int b){
4 - if(a >= MAX_SIZE){
5 + if(a >= MAX_SIZE ∥ a < 0){
6 return −1; }
7 data[a] = bar(b);
8 return 0; }

Listing 1: Running example

it is StA for all the modified functions. Specifically, given an
original function (Fo) and its corresponding patched function
(Fp), we verify the StA properties as described below:
Non-Increasing Input Space (P1). We check that the patch
does not increase the valid input space, i.e., all valid inputs to
Fp are also valid inputs to Fo. In other words, an input that
executes a VEP in Fp should also execute a VEP in Fo.
Output Equivalence. We check that, for all valid inputs, the
output of Fp is the same as that of Fo. In line with existing
work [51], we define the “output” of a function as all its
externally visible effects, i.e., its return value, writes to non-
local memory regions, and function calls along with arguments.

We limit our output equivalence analysis only to valid
inputs. More precisely, for a given valid input i, we use VEPi

o
and VEPi

p to denote the VEP executed by i in Fo and Fp,
respectively. We then check that for all valid inputs, the output
produced in VEPi

o is the same as that of the corresponding
VEPi

p. Specifically:
• Non-local Memory Writes Equivalence (P2): All

non-local memory writes operations in VEPi
p of Fp

should write the same value to the same memory region
as in the corresponding VEPi

o of Fo.
• Return Value Equivalence (P3): The return value of
Fp along VEPi

p should be the same as the return value
of Fo along VEPi

o.

• Function Call Equivalence (P4): The function calls
made along VEPi

p in Fp should be equivalent to the
function calls made along VEPi

o in Fo, i.e., the same
function is called with the same arguments.

III. CHALLENGES AND SOLUTIONS

Although previous work [51] demonstrates techniques
for verifying StA properties, applying them at the binary
level is challenging due to the absence of source-level
abstractions such as variable names, data types, and labels.
For instance, SPIDER creates a symbolic variable for each
L-value expression (e.g., p->fld), but at the binary level, these
expressions translate into multiple dependent load instructions,
resulting in complex symbolic expressions. Beyond the
engineering challenges of dealing with binaries [56], we
identified three main technical challenges, which we address
in this section along with our proposed solutions.

A. Finding Error-handling Exit Paths (EEPs)

Accurately identifying EEPs is essential for verifying
our properties. Most existing work [44], [50], [51], [63],
[75] relies on source code and leverages certain common
error-handling patterns easily detectable at the source-level,
but invisible in binaries. For example, CheQ [50] and
EECatch [63] use application-specific error-handling functions
(e.g., BUG, WARN in the Linux kernel) to identify error-handling
blocks and consider all paths reaching them as EEPs.
However, function names are often unavailable in binaries,
requiring additional strategies. SPIDER [51] uses goto error
labels [7] (e.g., goto fatal:) to mark error blocks, but these
labels are absent in binaries. Apex [44] and ErrDoc [75]
use disjoint termination as error markers. For instance,
in Listing 1, the error path (i.e., if(..) return -1) and valid
path (i.e., return 0;) terminate at different source locations
(i.e., Line 6 vs. 8). However, compilers usually optimize return
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char a = ...;  
+ char MAX_VAL = ...; 
+ if (a > (MAX_VAL - 1)){ 
+   return -1;  
+ } 
if (checkval(a) != 0) {  
  return -1;  
}  
...

movsx eax, [rbp-0x1]
mov edi, eax 
call 0x1149

movsx edx, [rbp - 0x5] 
mov eax, [rbp - 0x4] 
cmp edx, eax 
jbe ... 
... 
movsx eax, [rbp-0x5]
mov edi, eax 
call 0x1149

Original Binary

Patched Binary

Offset changed for
variable a

Source Level Patch

Fig. 2: Patch snippet demonstrating difficulty in verifying P4 at the
binary level.

points in binaries, merging them into a single location, as
shown in the CFGs of the corresponding original (at 0x1186)
and patched (at 0x118C) binary in Figure 1. Pattern-based
approaches are challenging in binaries since compilers can
set error values in multiple, semantically identical ways.
Our Solution: Instead of identifying error markers, we
detect EEPs directly from all the reachable execution paths
in the function’s CFG. We symbolically execute each path,
collecting symbolic values of all operands in each expression.
This precise modeling of instruction semantics allows us to
verify whether a given path is an EEP. Using a combination
of static analysis techniques and heuristics, we identify EEPs
from the symbolic state of each path (Section V-C).

B. Handling Complex Symbolic Constraints

Verifying StA properties requires comparing path constraints
and symbolic values. For instance, to verify P1, SPIDER [51]
disjunctively combines (i.e., logic OR) the PCs of all VEPs
in Fp and Fo, then checks that the combined PC of Fp

implies the combined PC of Fo. The lack of data types
complicates the path constraints by reducing all constraints
to bit-vectors instead of using corresponding theories. For
instance, in Listing 1, we could use the integer theory [69]
of Satisfiability Modulo Theory (SMT) solvers [58] to
represent the constraint a >= MAX_SIZE as the variable a is of
type int. However, in the corresponding binary (Figure 1),
type information is lost, requiring the use of bit-vector theory,
which is less efficient [60].

The absence of variable names and other identifiers compli-
cates the combination and comparison of symbolic values be-
tween Bo and Bp. Variables in binaries are typically identified
by their offsets, which may differ between Bo and Bp. This off-
set change can hinder the verification of StA properties, leading
to imprecise results. Consider the example in Figure 2, the offset
of the variable a changed from [rbp-0x1] in Fo to [rbp-0x5]
in Fp, potentially causing the function call call 0x1149 to be
incorrectly flagged as inequivalent () due to differing argu-
ments, leading to an incorrect conclusion that P4 does not hold.
Our Solution: We noticed that the issue of complex constraints
arises when combining PCs of different VEPs. To address
this, we avoid combining PCs when possible. Instead, we find
input equivalent VEPs or Matching Path Pairs between Fo

and Fp (Section V-D2). We define Matching Path Pair (MPP)
as a pair of VEPs, (i.e., VEPi

p and VEPi
o), such that any input

i, if it executes VEPi
p in Fp then it executes VEPi

o in Fo.
Identifying MPPs simplifies constraints and the verification
of StA properties. For instance, P1 holds if all VEPs of Fo

and Fp are part of MPPs. Similarly, we can verify P2-P4
individually for each MPP. If we cannot find MPPs, we fall
back to combining all VEPs. We use the terms Divisible
and Indivisible to distinguish between the cases of verification
through MPPs or through combining all VEPs, respectively.

We address Compiler-Introduced Offset Changes (CIOCs)
using heuristic-based techniques, including content equivalence
checking, shift-by-same-offset checking, and structural position
checking (details can be found in Section V-D1).

C. Handling Semantically Equivalent Changes

Patches often replace function calls with other equivalent
function calls or add calls to logging functions. For instance,
the patch in Listing 2 replaces the htmlNodeDumpFormatOutput
function with the xmlNodeDump functions. Although these
functions are semantically equivalent, such patches do not
strictly satisfy all StA properties (e.g., adding additional
function calls violates P4). Under the assumption that these
functions are equivalent, the patch is StA. Existing work, such
as SPIDER, handles this by pattern matching and maintaining
a list of semantically irrelevant function names and source
code patterns. However, defining such patterns at the binary
level is challenging due to differences in Instruction Set
Architecture (ISA) and the absence of function names.

1 - htmlNodeDumpFormatOutput(buf, docp, node, 0, format);
2 + xmlNodeDump(buf, docp, node, 0, format);
3 mem = (xmlChar∗) xmlBufferContent(buf);
4 if (!mem) { RETVAL_FALSE; ...

Listing 2: Example of a real-world patch that replaces a function
call with an equivalent one

Our Solution: Based on our experience, while these semantics-
preserving changes are difficult to verify automatically, a human
analyst can quickly recognize them. Hence, we use an adaptive
verification technique to handle this (Section V-D). When an
StA property fails, we introspect the corresponding symbolic
constraint to identify the root cause of the failure. We then
convert the root cause into a query for the analyst, highlighting
the difference between the two symbolic expressions related to
the patch. We use the analyst’s response to simplify symbolic
constraints and verify the corresponding property.

IV. OVERVIEW

This section presents an overview of VERIBIN, a system to
verify whether a given patch is Safe to Apply (StA), starting
from a patched binary and its original version.
Design Considerations. VERIBIN focuses on patches
modifying existing functions, excluding those that add or
remove an entire function. This design choice aligns with
the predominant nature of security patches, which typically
modify existing functions [47], [51], [64]. Moreover, verifying
patches that add or remove functions requires whole program
analysis and thus does not scale for real-world programs.
Our system is designed to function effectively with binaries,
regardless of symbol availability. Although not essential for
core functions, the presence of debug symbols enhances the
accuracy of specific tasks such as function prototype extraction
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and Error-handling Exit Path (EEP) detection. Additionally,
we conservatively interpret SMT solver failures as implication
or equivalence failures, leading VERIBIN to classify patches
as not StA. Figure 3 illustrates the framework of VERIBIN.

Preprocessing. Given binaries Bo, Bp, and a pair of
patch-affected function addresses, the preprocessing step (Sec-
tion V-A) uses existing binary analysis tools to extract essential
information for patch verification. This includes CFGs of the
affected functions Fo and Fp, function prototypes (i.e., number
and type of arguments) for all the function calls within Fo

and Fp, and matching BBs’ addresses. The extracted data is
automatically stored in a configuration file. For the example
in Listing 1, this step retrieves the matching BBs’ addresses and
function prototypes for foo and bar, adding this information
to the configuration file. Meanwhile, this step reconstructs
the CFGs of the Fo and Fp as illustrated in Figure 1.

Symbolic Execution. For Fo and Fp, symbolic representations
of each execution path are collected using under-constrained
symbolic execution. This process employs fresh symbols
for function arguments and global variables, symbolically
executing from the function entry point and recording the
state at each instruction. In the context of Figure 1, all paths
(i.e., Po1, Po2, Pp1, Pp2 and Pp3) are converted into their
symbolic representation, and their PCs are computed.

Identifying VEPs and MPPs. EEPs are identified using a
combination of static analysis and heuristics (Section V-C),
with the remaining paths classified as VEPs. In the example,
Po1 in Fo, and Pp1 and Pp2 in Fp are identified as EEPs,
while Po2 (in Fo) and Pp3 (in Fp) are identified as VEPs.
From VEPs of Fo and Fp, we identify Matching Path Pair
(MPP) (Section V-D2). As mentioned before in Section III-B,
an MPP is a pair of VEPs, (VEPi

p, VEPi
o), where any input

i executing VEPi
p in Fp also executes VEPi

o in Fo. In the
example from Figure 1, only one MPP is identified: (Pp3, Po2).

Verifying StA Properties. Given the identified MPPs,
the StA properties are verified as follows: P1 verification
(Section V-D3) ensure all VEPs of Fp are part of an MPP,
indicating that all valid inputs to Fp are also valid for Fo. In P2
verification (Section V-D3), for each MPP (VEPpi, VEPoi), we
identify and symbolically check the equivalence of non-local
memory writes. In the example, non-local writes at 0x1183 in
Pp3 and 0x117d in Po2 are compared, with identical symbolic
values satisfying P2. P3 verification (Section V-D3) involves
symbolically comparing return values along paths in each
MPP. For the example, this verifies that the return value (0) is
identical in Pp3 and Po2. P4 verification (Section V-D3) extracts
and compares function calls in each MPP, ensuring they target
the same function with identical symbolic argument values.
In the example, function calls at 0x1169 in Pp3 and 0x1163
in Po2 are compared, both targeting 0x1129 with the same
arguments (content at rbp-8, which is esi), thus satisfying
P4. The patch is considered StA if all four properties hold.

Handling Missing MPPs (i.e., Indivisible Case). When
Matching Path Pairs (MPPs) cannot be identified for certain
patches, all Valid Exit Paths (VEPs) and their Path Constraints
(PCs) are combined to verify StA properties. For P1 verification,
the PCs of all VEPs in Fp and Fo are disjunctively combined to
obtain CV EPp and CV EPo . The implication CV EPp →CV EPo

is then checked, ensuring that any input executing a VEP in
Fp also executes a VEP in Fo. Similar approaches are applied
to verify P2, P3, and P4 in this indivisible case.
Adaptive Verification. We resort to adaptive verification
(Section V-D) through analyst assistance when automated
verification fails. This process involves identifying the failure’s
root cause, converting it to a textual query about the patch,
and consulting the analyst. The analyst’s response is then
used to simplify symbolic constraints and re-verify the failed
property. The identification of MPPs facilitates this adaptive
verification, enabling human-interpretable queries on program
properties (e.g., “Is changing the 6th argument of foo from
20 to 10 considered StA?") rather than presenting analysts
with complex symbolic constraints to solve.

V. DESIGN

Figure 3 shows the overall design of VERIBIN. VERIBIN
comprises four main computational steps, which we explain
in the rest of this section.

A. Preprocessing

VERIBIN takes, as input, the original binary (Bo) and the
patched binary (Bp), together with the address of Fo (the
original function in Bo) and the address of Fp (its patched
version in Bp)1. During the preprocessing step, we analyze Bo

and Bp to collect necessary information for verification.
(1) Callee (or Called) Functions’ information: We gather
information about all callee functions in Fo and Fp. Specifically,
we collect function prototypes and the matching callee function
addresses between Bo and Bp. Within Fo and Fp, we record
the target address of each call instruction. Using a binary
decompiler [5], we extract the callee function prototypes
and fetch matching function addresses from the perfectly
matched function addresses generated via binary diffing. To
enhance the accuracy of function prototypes, we perform
backward decompilation of the callee functions called within
the function being analyzed. Specifically, before decompling a
function, we first decompile all its callee functions to provide
additional context for more accurate prototype recovery.
(2) Matching Basic Blocks addresses: We gather the addresses
of matching basic blocks in Fo and Fp via binary diffing.
(3) Control Flow Graph (CFG): We concstruct the CFGs for
Fo and Fp.

The information gathered during preprocessing (except for
the CFGs) is stored in a configuration file for later use.
Optionally, an analyst can edit and correct this information if the
preprocessing step is inaccurate (e.g., an analyst can provide ac-
curate argument information for uncommon variadic functions).

B. Symbolic Execution

We symbolically execute Fo and Fp from their entry points,
collecting symbolic expressions of states along each execution
path.

1Analysts can obtain the addresses of the patch-affected functions by perform-
ing function-level binary diffing using existing tools. In a side experiment, we
found that in 81.4% of our dataset of 86 binaries, no human effort was required,
as the patch-affected function addresses exactly matched those identified by Bin-
Diff (i.e., not-perfectly-matched functions). Yet, we consider the process of fully
automating the identification of the patched functions orthogonal to our effort.
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Fig. 3: Overall design of VERIBIN.

We handle loops by allowing each block to be visited at
most twice, and infeasible paths are avoided through proactive
pruning. Precisely, at each conditional jump (i.e., IfThenExpr
followed by a JumpExpr), a new path is explored only if the
corresponding path constraint is satisfiable.

For inter-procedure function calls, we generate a symbolic
expression that includes the function name and symbolic
arguments, assigning this expression to the return register as
the function’s return value. Non-constant pointer arguments
are treated as output arguments, meaning they can be modified
to carry new data as a result of the function’s execution. This
is often the case with pointer arguments, for which the content
stored at the addresses they point to may be altered by the
called function. Therefore, we update the content stored at the
memory locations pointed by these output arguments similarly
to the return value of the function. As an example, in the
code foo(&a,b), a is considered as an output argument, and
the memory is updated by storing the value of foo(&a,b) at
the location a. Note that foo is not symbolically executed and
is treated as an uninterpreted function [35].

At the end of this process, we have all feasible execution
paths from the function’s starting basic block to its exiting
basic blocks. For each execution path, we track the following
information: (1) Path Constraint: The input conditions that
must be satisfied for the execution path to be followed. (2)
Symbolic Register Values: A dictionary mapping register names
to their symbolic values. (3) Symbolic Memory: A dictionary
mapping symbolic addresses to the symbolic content stored at
those addresses. (4) Function Calls and Their Arguments: A
dictionary correlating each function call site with the symbolic
expressions corresponding to the callee function’s arguments.

C. EEPs Identification

As discussed in Section IV, our analysis requires
identify Error-handling Exit Paths (EEPs) to verify StA
properties. We identify EEPs at the path level, considering
an execution path from Section V-B to be an error-handling
exit path if it satisfies any of the following heuristic rules:
Heuristic A: Call to Error-Handling Functions. Error-
handling functions, such as exit, are commonly used to handle
unrecoverable errors and terminate the execution of the program,
usually indicating an EEP. We maintain a list of known library
error-handling functions (e.g., exit, __assert_fail, abort),
and check if the path contains calls to any function in this list.
For statically linked binaries, we use FLIRT [4] to recover
function names, ensuring these library error-handling functions
are identifiable even in stripped binaries. Additionally, we
utilize the ‘noreturn’ information (i.e., functions that do
not return to the caller, typically used for error handling or

program termination) from the function prototypes recovered
using the binary decompiler, adding those functions to our
error-handling function list. User-defined error-handling
function names can also be specified in the configuration file.
Heuristic B: The return value refers to an invalid return
value. A path is considered an EEP if its return value is
identified as invalid. We collect all unique return values from
the feasible paths within the function. If the unique values
are 0 and 1, the value associated with a shorter average path
length is considered invalid. For more than two unique values,
negative return values are typically considered invalid. This
heuristic is based on the observation that most error-handling
functions use a negative one (-1) or boolean values (1/0) as
the return value to indicate errors [50], [63]. To accommodate
project-specific error codes, we also incorporate invalid return
values specified by the analyst.
Heuristic C: The path’s length is relatively short. A path
is considered an EEP if its length is relatively short compared
to other paths in the CFG. This heuristic is based on the
observation that patches adding checks for invalid inputs
often lead to quick termination of one branch, while the
other branch leads to the main function body. We consider a
path as an EEP if the path length is less than a specific ratio
(determined to be 0.8) of the average length of all the paths
in the CFG, as detailed in Appendix B.

D. StA Properties Verification

This subsection details the verification of the four properties
discussed in Section II-B

1) Handling Compiler-Introduced Offset Changes: In
binary analysis, memory allocation to different addresses post
re-compilation is a common occurrence, often a result of
compiler optimizations. While these addresses are different
in Fo and Fp, they represent the same content (e.g., the
same variable in the source code). We name these changes
as compiler-introduced offset changes (CIOCs). The following
techniques are used to handle CIOCs:
Content-Based Comparison. When symbolic expressions
differ solely due to memory loads from distinct fixed addresses,
we verify the equivalence by comparing the contents at these
addresses in both Bo and Bp. This is particularly relevant for
global read-only constants, like constant strings, relocated by
the compiler.
Offset Analysis. Based on our observation, when a compiler
changes the offset of local variables, it retains the relative
position of the variables. In other words, all variables shift
by the same offset. Given two symbolic expressions from Fo

and Fp, we collect all the unmatched local variable addresses
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in these symbolic expressions. If these addresses differ by
a consistent offset, we attribute this to a CIOC, treating the
variables at these addresses as equivalent.
Structural Position Correlation. Based on our observation,
symbolic expressions appearing in structurally similar positions
of two ASTs typically represent the same variable. Hence,
when symbolic expressions appearing in corresponding
structural positions of two ASTs only differ by an offset, we
consider these two symbolic expressions equivalent.

We add these offset mappings as assumptions in our patch
report, enabling an analyst to verify whether these assumptions
hold. A case study in Section VIII demonstrates the necessity
of addressing CIOCs.

2) Finding Matching Path Pairs: As described in
Section III-B, we prefer to use MPPs to verify StA properties,
thereby avoiding complex symbolic constraints and improving
VERIBIN’s performance. To find MPPs, we first obtain all
feasible paths in Fo and Fp (Section V-B). We then remove
EEPs from these paths (Section V-C), maintaining a list
of remaining valid exit paths (VEPs), denoted as V EPo

and V EPp, respectively. An MPP is a tuple, ⟨p,o⟩, where
p∈V EPp and o∈V EPo, such that any input i executing p in
Fp also executes o in Fo. In other words, the path constraints
of p (Cp) imply those of o (Co). We use an SMT solver to
check whether Cp⇒Co by verifying the following formula:

unsat(¬(Cp=⇒Co)) (1)

This ensures that an input satisfying Cp but not Co does not
exist (i.e., Cp∧¬Co is false).

Given a p∈V EPp, to find its MPP, a naive approach would
be to try all VEPs in V EPo until a path o, for which (1)
holds, is found. However, this search would require calling the
SMT solver a number of times that has a quadratic complexity
over the number of VEPs. To speed up this search, we rely
on the intuition that if two paths are more “similar”, they
are more likely to be an MPP and satisfy (1). For this reason,
they should be preferred first.
Preferential Matching. Based on the above intuition, we pre-
liminary compute a heuristic “path similarity” metric between
all possible pairs of paths (p′,o′), where p′∈V EPp, and o′∈
V EPo. The similarity score is computed using the formula:

S(p′,o′)=NMB/(N
p′

B +No′

B ) (2)

where NMB is the number of matching basic blocks obtained
from binary diffing, Np′

B is the number of basic blocks in
p′, and No′

B is the number of basic blocks in o′. If binary
diffing fails to identify any matched basic blocks between p′

and o′, we use a string similarity score based on the textual
representations of the path constraints of p′ and o′.

After computing all the similarity scores, we sort the
pairs by their similarity score and verify (1) starting with
the highest-scoring pairs. For performance considerations,
we limit the number of verifications attempts for each path
p′ ∈ V EPp. If this limit is reached without finding an MPP
for p′, we assume that no MPP exists for this path.

If all valid paths in Fp and Fo are part of an MPP
(i.e., ∀p∈V EPp, ∃o∈V EPo | ⟨p,o⟩∈MPPs and ∀o∈V EPo,
∃p ∈ V EPp | ⟨p,o⟩ ∈MPPs), the functions can be divided
into MPPs, and we call them divisible. In this case, we verify
whether a patch is StA by verifying whether the four properties

(P1-P4) hold or not for all MPPs. If the functions cannot be di-
vided into MPPs (i.e., they are indivisible), we follow a similar
approach to existing work [51] by combining different VEPs.

3) Verifying StA Properties: Next, we will discuss in
detail how VERIBIN verifies four StA properties with or
without MPPs, including non-increasing input space, non-local
memory writes equivalence, return value equivalence, and
function calls equivalence.
P1: Non-Increasing Input Space. We verify that the patch
does not increase the valid input space, i.e., all valid inputs to
Fp are also valid inputs to Fo. Note that we cannot rely solely
on new EEPs to determine whether a patch is StA since a
patch can restrict the input space by either introducing new
EEPs or by limiting the conditions under which an existing
EEP can be reached. Therefore, VERIBIN checks P1 through
path constraint implication rather than simply checking for the
existence of new EEPs. We use CV EPp

and CV EPo
to denote

the input space of Fp and Fo for all valid paths, respectively.
Thus, P1 can be represented as CV EPp

⇒ CV EPo
where,

CV EPp
= ∪

p′∈V EPp

{Cp′} and CV EPo
= ∪

o′∈V EPo

{Co′}. We

elaborate on verifying whether CV EPp ⇒CV EPo holds or not
in two cases: divisible and indivisible functions.
Divisible. As discussed in Section V-D2, Fo and Fp are divisible
if ∀p ∈ V EPp,∃o ∈ V EPo such that Cp ⇒ Co. Therefore,
when Fo and Fp are divisible, CV EPp

= ∪{Cp} ⇒ ∪{Co},
where ⟨p, o⟩ is MPP identified in Section V-D2. Since
∪{Co}⇒CV EPo

, it follows that CV EPp
⇒CV EPo

, meaning
P1 holds as long as Fo and Fp are divisible.
Indivisible. When the functions are indivisible, we obtain
CV EPp

by disjunctively combining (i.e., using logic OR)
the constraints of all paths in V EPp. Specifically, CV EPp

=∨
p′∈V EPp

Cp′ . Similarly, we get CV EPo by combining the

constraints of all paths in V EPo. We verify whether P1 holds
or not by solving the following formula with an SMT solver:

unsat(¬(CV EPp
=⇒CV EPo

)) (3)

Example. In Figure 1, the basic blocks with green background
are matching basic blocks (BB1 matches with BB′

1, BB2

with BB′
2, etc.). For each p′ ∈V EPp, we first calculate the

path similarity score with each o′∈V EPo. In this case, there
is only one path in each, Pp3

∈ V EPp and Po2 ∈ V EPo,
yielding a similarity score S(p3,o2) ≈ 0.43. We then check
whether Cp3 ⇒ Co2. Clearly, Cp3, with an additional
condition check, narrows the input space. Therefore, any
input satisfying Cp3 also satisfies Co2, indicating Cp3⇒Co2.
As a result, the pair ⟨p3,o2⟩ is identified as an MPP. Given
that both V EPp and V EPo contain only one VEP, and
CV EPp =Cp3⇒CV EPo =Co2, the property P1 is met.
P2: Non-Local Memory Writes Equivalence. We check that
all non-local memory writes operations in VEPi

p of Fp write
the same value to the same memory region as that in the
corresponding VEPi

o of Fo. Non-local memory writes (global
writes) are defined as memory writes to addresses other than
stack-relative addresses (e.g., addresses relevant to rsp and
rbp in x86-64). An example from Figure 1 illustrates that
a write operation storing edi into rbp - 4 in BB1′ is not
considered a global write, whereas storing eax into rcx + rdx
in BB3′ qualifies as a global write.
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We represent global write operations with the notation GP

for Fp and GO for Fo. Each global write is denoted as a tuple
⟨a,v⟩, with v being the symbolic value written and a being
the corresponding address. We define equivalency between
two symbolic expressions as a≡b if unsat(¬(a==b)), and
inequivalency as a ̸≡b if sat(¬(a==b)). Equivalence between
write operations in Fp and Fo is defined as ao≡ap and vo≡vp,
meaning the addresses and values in these operations are equiv-
alent, respectively. Accordingly, P2 holds (i.e., GP ⇔GO) if (1)
∀⟨ao,vo⟩∈GO,∃⟨ap,vp⟩∈GP such that ao≡ap∧vo≡vp, and
(2) ∀⟨ap,vp⟩∈GP ,∃⟨ao,vo⟩∈GO such that ao≡ap∧vo≡vp.

As with P1, we use different approaches to verify P2 when
Fp and Fo are divisible or indivisible.
Divisible. In divisible functions, each global write g is denoted
as ⟨a,v⟩, indicating symbolic value v is stored at address a upon
satisfying path p′. For each MPP, ⟨p,o⟩, we use Gp and Go to
represent the global writes in the paths p and o, respectively.
Given Cp ⇒ Co, a direct comparison of vo and vp suffices
without comparing their constraints. If ∀⟨p, o⟩ ∈ MPPs,
Gp⇔Go, we conclude that GV EPp

⇔GV EPo
, thus P2 holds.

Indivisible. When Fo and Fp are indivisible, we obtain GV EPp

and GV EPo
by merging writes of different values to the same

address from all the paths V EPp and V EPo, respectively.
For example, if address a has multiple values v1, and v2 from
paths p1, p2, and p3, represented as ⟨a,v1⟩, ⟨a,v2⟩, and ⟨a,v2⟩,
we combine the path constraints for each unique value. For
v1, the constraint is C1, and for v2, it is C2∨C3. The merged
value is determined using the formula:

vmerged=ITE(C1,v1,ITE(C2∨C3,v2,vdefault)) (4)

Where ITE(c,a,b) represents an If-Then-Else symbolic
expression, with output a when constraint c is met, otherwise
b. The vdefault serves as a placeholder for the memory’s
original value before any write operation.

Finally, to verify P2 (i.e., GV EPp
⇔ GV EPo

), we use an
SMT solver, checking if vpmerged

≡vomerged
. The SMT solver

conditions are (¬(vomerged
== vpmerged

∧CV EPo
== True

∧CV EPp
==True)), with CV EP denoting the path constraint

for all valid paths. This ensures the comparison of values only
occurs within VEPs.
P3: Return Value Equivalence. We check that the return
value of Fp along VEPi

p matches the return value of Fo along
VEPi

o. VERIBIN verifies the return value equivalence only if
the patch-affected function has a return value (which can be
inferred from the function’s prototype). We use R to denote
the return value. P3 holds if RV EPp

≡RV EPo
. As before, we

use different approaches for divisible and indivisible functions.
Divisible. In each path, the return value is stored in a specific
return register (e.g., rax in x86-64). Exploiting this fact,
after symbolic execution, we retrieve the return value from
the symbol value map of the current path (as mentioned in
Section V-B). P3 holds if ∀⟨p,o⟩∈MPPs, Rp≡Ro.
Indivisible. Similar to global writes, when the functions are indi-
visible, we obtain RV EPp

and RV EPo
by merging return values

and their corresponding path constraints from all V EPp and
V EPo using ITE expression. P3 holds if unsat(¬(RV EPp

==
RV EPo

∧CV EPp
==True ∧CV EPo

==True)).
P4: Function Calls Equivalence. The function calls made
along VEPi

p in Fp should be equivalent to those made along
VEPi

o in Fo, i.e., the same function should be called with

the same arguments. As mentioned in Section II-B, a function
call in Fo is considered equivalent to one in Fp if the callee
function and its arguments are equivalent. For a callee function
cf that is invoked multiple times, we use No

cf and Np
cf to

denote the number of calls to cf in V EPo and V EPp if
indivisible (or MPPo and MPPp if divisible).
Divisible. When the functions are divisible, we check the
function call equivalence for each MPP, and P4 holds if the
function calls are equivalent on all MPPs. We identify callee
functions and their arguments in p as ⟨cfp,argsp⟩, where cfp
and argsp represent the callee function and its arguments
from call instructions in p. Similarly, we gather ⟨cfo,argso⟩
in o. Equivalence is established if ⟨cfp,argsp⟩≡⟨cfo,argso⟩,
meaning for each cfp, there’s a matching cfo where cfp≡cfo
and argsp≡argso, and vice versa.

Initially, we check the equivalence of cfp and cfo. We con-
sider cfp≡cfo, if these two functions are perfectly matched via
binary diffing. For cases where cfp≡cfo, we then determine the
number of times cf is called in p and o. If Np

cf =No
cf , we then

proceed to compare the arguments of cf based on the similarity
of their corresponding basic blocks. In the absence of perfectly
matched basic blocks, we resort to comparing the arguments
in the sequence they appear. We consider argsp≡argso if the
symbolic expression of each argument in argsp is equal to the
corresponding argument’s symbolic expression in argso.
Indivisible. When the functions are indivisible, we get all
the function calls and their arguments from all VEPs in
Fp and Fo (denoted by V EPp and V EPo respectively)
instead of using MPPs. Specifically, we use ⟨CFp,ARGSp⟩
and ⟨CFo,ARGSo⟩ to denote all function calls and
their corresponding arguments in V EPp and V EPo,
respectively. We use the same approach to verify whether
⟨CFp,ARGSp⟩ ≡ ⟨CFo,ARGSo⟩ as to verify whether
⟨cfp,argsp⟩≡⟨cfo,argso⟩ in the divisible case.

E. Adaptive Verification

In certain cases, patches that do not fully satisfy the StA
properties may still be classified as StA by analysts through
a process known as adaptive verification, particularly when
they introduce semantically equivalent changes. Adaptive ver-
ification involves providing additional information to analysts,
pinpointing the precise cause of unsafety, and allowing them to
decide whether to disregard the identified issue if it is deemed
acceptable. For example, replacing a hashing function with a
safer version (replacing SHA1 with SHA256) may cause a devi-
ation from the StA properties due to a different function call.
However, an analyst may consider this modification acceptable.

When the adaptive mode is enabled, VERIBIN identifies
the root cause of any failure in the P1-P4 checks and prompts
the analyst to determine whether the detected difference can be
regarded as StA. Table I provides a detailed overview of the
information about the queries VERIBIN generates during the
adaptive verification process, including the type of questions
(Q), scenarios when each question is asked (Scenario), and the
question or task presented (Prompt). The questions are as fol-
lows: (Q1) During P2, when the original value and the patched
value differ, we highlight the differences in the symbolic expres-
sion, provide a counterexample that leads to different values
in two versions, and ask the analyst if these differences can be
considered as StA. (Q2) When there are additional (or fewer)
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TABLE I: VERIBIN questions for adaptive verification. Q: type of
questions. Scenario: specific conditions under which the question
is asked. Prompt: the question or task presented.

Q Scenario Prompt

Q1 ∃⟨a′o, v′o⟩ ∈ GO , ⟨a′p, v′p⟩ ∈
GP : a′o≡a′p∧v′o ̸≡v′p

Can the difference be-
tween v′o and v′p be con-
sidered equivalent (StA)

Q2
∀⟨ao, vo⟩ ∈ GO ,
∃⟨a′p,v′p⟩ ∈ GP : ao ̸≡ a′p, or
vice versa (⟨a′o,v′o⟩)

Can VERIBIN consider
⟨a′p, v′p⟩ (or ⟨a′o, v′o⟩)
to have no side effects
(StA)?

Q3
∀cfo∈V EPo, ∃cf ′

p∈V EPp:
cfo ̸≡ cf ′

p ∧ ∀cfp ∈ V EPp,
∃cf ′

o∈V EPo: cfp ̸≡cf ′
o

Can cf ′
o and cf ′

p be
considered equivalent?
(cf ′

o≡cf ′
p)

Q4 ∃cf ′
o≡cf ′

p: No
cf ′

o
̸=Np

cf ′
p

Can VERIBIN consider
cf ′

o (same as cf ′
p) to

have no side effects
(StA)?

Q5
∃cf ′

o ≡ cf ′
p ∧No

cf ′
o
= Np

cf ′
p

:

argsio ̸≡argsip

Can VERIBIN consider
argsio and argsip to be
equivalent?

global writes in Fp compared to Fo, VERIBIN asks whether
this global write can be considered to have no side effects (StA).
(Q3) When VERIBIN finds unmatched function calls from all
the VEPs, VERIBIN asks whether the two external function
calls can be considered equivalent. (Q4) When one function
call is detected to be called a different number of times in Fp

compared to Fo, VERIBIN asks whether this function can be
considered to have no side effects (StA). (Q5) When the ith ar-
gument in one matching function call pair is different, VERIBIN
asks whether the arguments can be considered the same.

The adaptive verification process is designed to aid the ana-
lyst in analyzing patch-introduced changes. We expect the ana-
lyst to have some understanding of the patch’s intended behav-
ior and the patched binary and to provide accurate information
to VERIBIN. For example, if the analyst knows the the patch
involves adding a memset function call, and VERIBIN confirms
that the patch-introduced changes are about adding a memset
function call, the analyst can unequivocally answer the question,
i.e., Q4, with ‘Yes’. When the analyst is unsure about a question,
they can conservatively answer with ‘No’, and VERIBIN will
consider the patch as not Safe to Apply (non-StA). Based on
the analyst’s responses, we update the symbolic expressions
and re-check the corresponding property. For example, if the
analyst answers ‘Yes’ to Q1, VERIBIN will add the information
that vo==vp (i.e., vo is equal to vp) to the SMT solver and re-
check the property. We also record the analyst’s responses to the
questions, which can be used to improve the tool’s performance
in future analyses to avoid asking the same questions.

VI. IMPLEMENTATION

We implement VERIBIN using about 4,100 lines of
Python code. For preprocessing, we used BinDiff [91] to
get information about matching functions and basic blocks,
IDA PRO [5] and angr [1] to collect the callee functions’
prototypes in Fo and Fp.

Additionally, angr serves as our static binary analysis tool
for extracting the Control Flow Graphs (CFGs) for both Fo

and Fp. Furthermore, angr is used for the under-constrained
symbolic execution on both Fo and Fp. We implement a
plugin within angr to collect symbolic information across
each execution path. This plugin monitors the symbolic values

regarding P1-P4 for each execution path using breakpoints
and some handler functions. We also attach hooks to function
call instructions, handling them as uninterpreted functions,
without executing the actual call.

During the symbolic execution phase, we use Claripy [3],
the default SMT-solver utilized by angr, to generate symbolic
expressions and manage constraint verification. Despite Claripy
functioning as an abstracted constraint-solving interface for
Z3 [29], it lacks support for uninterpreted functions. To address
this, we supplement Claripy’s capabilities by implementing a
wrapper object for Z3’s uninterpreted function. After symbolic
execution, we collect the resulting Claripy expressions and
convert them into Z3 expressions. These are subsequently fed
into the Z3 SMT solver for checking StA properties. We use
these tools because of their availability, reliability, and wide
adoption in existing program analysis research works.

VII. EVALUATION

In this section, we first describe the evaluation setup
along with our dataset. Next, we present the evaluation
of VERIBIN in terms of effectiveness and efficiency, for
both un-stripped and stripped binaries. We then discuss the
adaptive verification mechanism and its evaluation. Finally, we
present the comparison with a source-level patch verification
technique, SPIDER [51].

A. Experimental Setup

We evaluated VERIBIN using a server (AMD EPYC 7773X)
with 256 CPUs and 1TB of memory.
Dataset. We evaluate VERIBIN with three datasets: MicroPatch
Bench [45], AMP Challenges dataset, and PatchDB binaries
dataset. For each dataset, we compile both unstripped (D1,
D2, and D3) and stripped (D1_s, D2_s, and D3_s) versions
of the binaries.

The MicroPatch Bench dataset contains 62 real-world patches
fixing CVEs affecting various open-source projects. Each patch
within this dataset includes the source code of the original
binary and a Dockerfile to generate the original and patched
versions of the project. We run the provided Dockerfiles to gen-
erate 62 pairs of original and patched binaries. This dataset was
created and provided to us by an external group of researchers.

The AMP challenges dataset is provided by DARPA
for their Assured MicroPatching (AMP) project [8]. It
contains 7 binaries in both their original and patched version,
fixing different types of vulnerabilities. These binaries are
designed for use with embedded platforms that are commonly
found in the vehicle industry and are compiled for different
architectures, such as ARM and AVR architectures.

PatchDB [77] is a large patch dataset containing source code
commits, including security and non-security patches. However,
this dataset does not include binaries or build instructions,
requiring us to undertake these additional steps. Our criteria for
selecting patches are stringent: they must be security-related
with a CVE number, part of a project written in C, and not
from large projects like Linux kernel. Subsequently, our focus
is solely on FFmpeg, the project with the most patches. For
this, we create a Dockerfile to compile both the original and
the patched binaries. We further refine our selection to 56
patches, each impacting no more than three functions, with the
largest affected function being less than 2,000 bytes in size.
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TABLE II: Experiments Description

Adaptive MPP CIOC
E1 é Ë Ë
E2 Ë Ë Ë
E3 é é Ë
E4 é Ë é

Ground Truth Collection. To gauge the accuracy of our
tool in an automatic mode and the effectiveness of adaptive
verification, we established ground truth (i.e., whether a patch
is a StA or not), using two different criteria. The first criterion,
Strict Adherence Ground Truth (GT_Strict), verifies if a
patch strictly adheres to the StA properties in an automated
mode without human interaction. The second criterion,
Analyst Judgment Ground Truth (GT_Analyst), considers
whether a security analyst would deem a patch StA, even with
semantically equivalent changes that may violate StA properties.
Specifically, we classify a violation as StA if it: (1) Adds
initialization code to global variables (e.g., assigning a constant
value 0 or calling memset); (2) Adds a call to a function
with no side effects (e.g., logging or strlen); (3) Replaces
a function call with another having the same semantic effect,
e.g., replacing an insecure hashing function (SHA1) with a safer
version (SHA256); (4) Modifies the arguments of a function that
has no side effects. The ground truth is collected by two authors
manually reviewing the source code of the patches, determining
whether each patch meets our criteria for being considered StA.
Experiment Configuration. As depicted in Table II, we
conducted four experiments denoted as E1, E2, E3, and E4. E1
serves as our baseline experiment, representing the baseline
configuration. E2 focuses on a specific aspect: adaptive
verification. E3 and E4 focus, respectively, on the utilization
of Matching Path Pairs (MPPs) optimization, and the detection
of Compiler-Introduced Offset Changes (CIOCs). Their details
are provided in our ablation study (see Appendix A) to
quantify the contribution of MPPs and CIOCs. On average,
using MPPs reduced the verification time by 75%, while using
CIOCs improved the accuracy by 12%.

B. VERIBIN Results: un-stripped binaries
In this subsection, we will discuss the VERIBIN results

obtained in E1, on un-stripped binaries (D1, D2, D3), and
examine several key aspects: applicability, correctness, false
negatives, effectiveness of the EEP detection heuristics, manual
configuration, and runtime.

TABLE III: Dataset Composition. Arch.: architecture is not supported.
No Func.: Cannot detect patch-affected target functions. Timeout:
Analysis timeout. Memory: Analysis memory exceeded.

Dataset Total Support Excluded and Corresponding Reasons
Arch. No Func Timeout Memory

D1 62 42 0 4 2 14
D2 7 6 1 0 0 0
D3 56 38 0 0 11 7

Unstripped 125 86 39
D1_s 62 41 0 5 2 14
D2_s 7 6 1 0 0 0
D3_s 56 38 0 0 11 7

Stripped 125 85 40

Applicability. As shown in Table III, for D1, we support 42
patches in this dataset, with some exclusions due to various
challenges: Firstly, difficulty in accurately identifying the patch-
affected functions in the binaries (labeled as ‘No Target Func’).

TABLE IV: Results Categorization (StA: Safe to Apply, TP/FP:
True/False Positives, TN/FN: True/False Negatives)

VERIBIN
StA non-StA

Ground Truth StA TP FN
non-StA FP TN

This challenge often arises when source-level modifications are
not detected by binary diffing tools, which may occur either
because the patch is not successfully applied, or because the
modification is too subtle to be detected (e.g., replacing a string).
Secondly, there are instances where our analysis exceeded an
8-hour time limit (noted as ‘Timeout’). Thirdly, there are cases
where our analysis surpassed a 100 GB memory limit (marked
as ‘Memory’). For D2, we support 6 out of 7 patches, excluding
one binary compiled for the AVR architecture, which is not
supported by angr (marked as ‘Arch.’). For D3, we support 38
out of 56, with exclusions due to timeouts (11 instances) and
memory exceeded limitation (7 instances). Overall, we support
86 out of 125 patches (68.8%) in the un-stripped dataset.
Correctness. We evaluate the correctness of VERIBIN by
comparing its results with the ground truth. Table IV shows
how we define True/False positives and True/False negatives,
with respect to the ground truth. Note that we also classify
such cases as False Negatives if the StA properties that fail
as determined by our tool, VERIBIN, do not align with the
established ground truth result for non-StA patches. Although
not desired, it is acceptable to have false negatives, where
in VERIBIN considers a StA patch to be non-StA — in these
cases, an analyst might have to verify the patch manually.

We use the accuracy metric (ACC) and false positive rate
(FPR) to measure the correctness of the patch verification
results produced by VERIBIN, where ACC = TP+TN

P+N and
FPR= FP

FP+TN .

TABLE V: VERIBIN Results Summary. ACC: accuracy. FPR: False
Positive Rate.

Dataset Number ACC FPR VERIBIN Result
TP TN FP FN

D1 42 90.5% 0.0% 17 21 0 4
D2 6 100.0% 0.0% 0 6 0 0
D3 38 94.7% 0.0% 12 24 0 2

Unstripped (E1) 86 93.0% 0.0% 28 52 0 6
D1_s 41 85.4% 0.0% 15 20 0 6
D2_s 6 83.3% 0.0% 0 5 0 1
D3_s 38 94.7% 0.0% 12 24 0 2

Stripped (E1) 85 89.4% 0.0% 27 49 0 9
D1 42 90.5% 0.0% 26 12 0 4
D2 6 100.0% 0.0% 2 4 0 0
D3 38 94.7% 0.0% 18 18 0 2

Unstripped (E2) 86 93.0% 0.0% 46 34 0 6

Table V summarizes the results for VERIBIN. For
a more detailed analysis of our evaluation, including
comprehensive results for each patch, please refer to our
GitHub repository [11]. In these datasets, VERIBIN identifies
StA patches and correctly describes patch behaviors regarding
StA properties, with 93.0% ACC and 0% FPR. We also
notice that VERIBIN performs better for D2 than D1 and D3,
because these patches are relatively simpler (i.e., mostly adding
additional checks) and targetting smaller functions. In a more
conservative approach, categorizing all patches that time out
or exceed memory limits as FN , the ACC drops to 66.7%.

10



False Negatives. As shown in Table V, in total, among the 3
datasets, there are 6 false negatives (i.e., VERIBIN considered a
StA patch to be non-StA, or the failing properties for a non-StA
patch determined by VERIBIN do not match with the ground
truth result). For patch #9 and #35, the CFG recovered from
angr is broken. For patches #7 and #70, where changes are
introduced into loops, VERIBIN could not explore all execution
paths adequately due to our unrolling-loop-once strategy,
resulting in path constraint implication failures. For patch #54,
VERIBIN encounters difficulties in correctly pairing varying
indirect calls between the original and the patched functions.
For patch #30, VERIBIN fails to explore all execution paths
due to un-initialized inter-function global variables.
Manual Configuration. Among D1, D2, and D3, we need
human effort to correct the configuration file for five patches.
This additional information pertains to Error-handling Exit
Paths (EEPs), where our existing EEP detection mechanisms
fail to detect all patch-related EEPs. These EEPs fall into
distinct categories: (1) Functions with no return values (Patch
#12, #24); (2) Functions that return 0 as an invalid return
(Patch #42, #77); (3) Functions that return a special return
format: as in Patch #34, where a function returns a structured
value. A comprehensive evaluation of the EEP detection
heuristics’ effectiveness is detailed in Appendix B.
Runtime. To evaluate the runtime of VERIBIN, we record
the time elapsed excluding the preprocessing step (which
is a one-time, cached effort, requiring an average of 922.0
seconds for D1, D2, and D3 samples). Across D1, D2, and D3
samples, the average runtime of VERIBIN is 1,293.8 seconds,
with 566.3 seconds for symbolic execution and 635.8 seconds
for checking StA properties.

Based on our evaluation, we found that, on average, the
most time-consuming procedure is symbolic execution, which
correlates with the number of reachable execution paths and
the complexity of each execution path. However, in some
specific cases, querying the SMT solver can take even longer.
For example, for patch #35, VERIBIN required 6 hours for the
verification to finish, where around 5k seconds is for symbolic
execution and around 15k seconds are for StA properties
checking. With further analysis, we find the reason is that the
patch-affected function is a hashing function with complicated
calculations, making it harder for the SMT solver to solve the
equivalence constraints of the symbolic expressions.

Overall, our results demonstrate that VERIBIN can
effectively verify closed-source patches, since our design
choices guarantee a high level of assurance that patches
classified as StA by VERIBIN are indeed StA.

C. VERIBIN Results: stripped binaries

This subsection presents VERIBIN results from E1, focusing
on stripped binaries (D1_s, D2_s, D3_s). Configuration files
are regenerated for these stripped binaries, with manual
configuration for five patches regarding EEPs, as in the
un-stripped binaries.
Applicability. As shown in Table III, compared with unstripped
binaries, we fail to handle one additional patch in the stripped
dataset. The reason is that for Patch #30, the tools used in
our pre-processing step fail to correctly recognize the target
function in the stripped binary. Overall, VERIBIN supports
85 out of 125 patches (68%) in the stripped dataset.

Correctness. In the stripped datasets (D1_s, D2_s and D3_s),
VERIBIN identifies StA patches and correctly describes patch
behaviors regarding StA properties, with 89.4% ACC and 0%
FPR, as shown in Table V.
False Negatives. Among the three datasets, there are nine false
negatives. For five patches (i.e., #9, #35, #7, #70, and #54),
we inherit the same false negatives as the unstripped binaries.
The additional four false negatives are due to inaccurate
information for stripped binaries, which fall into the following
two categories: (1) Incorrect function prototype information:
Stripped binaries often have problematic function prototypes.
Information such as the type of function arguments and
whether a function returns a value can be incorrect, leading to
three patches (#16, #28, and #45) having incorrect results. (2)
Incorrect matching function information: For patch #42, the pre-
processing step fails to correctly match functions in the original
and patched binaries. We verified that an analyst can potentially
correct the four additional false negatives by manually
providing accurate information about functions’ prototypes
and matching functions’ locations in the configuration file.
Runtime. Similar to unstripped binaries, the average runtime
of VERIBIN for stripped binaries is 1,367.4 seconds, with
635.9 seconds for symbolic execution and 657.2 seconds for
checking StA properties.

Generally, VERIBIN performs slightly less effectively in
stripped binaries compared to unstripped binaries. The primary
challenge in stripped binaries is recovering the accurate
function information, including function prototypes, matching
functions, and the function CFGs. Without this information,
VERIBIN may face difficulties in correctly identifying the
patch-introduced changes, which can impact the accuracy of
StA properties checking.

D. Adaptive Verification Evaluation (E2)

TABLE VI: VERIBIN questions for adaptive verification. Q: type of
questions. N_p: the number of patches in which the current question
is asked among the datasets. Occ.: the total number of occurrences.

Q Q1 Q2 Q3 Q4 Q5 Total
Np 21 18 5 20 14 49
Occ. 25 26 5 33 26 115

As discussed in Section V-E, when a patch does not satisfy
the StA properties automatically, an analyst can further verify
this patch with adaptive verification enabled. In this case,
VERIBIN may ask analysts for specific information regarding
the detected differences. Table VI provides a statistics overview
of the information about the queries VERIBIN generates
during the adaptive verification process, including the type of
questions (Q), the number of patches in which the question is
asked (N_p) and the total number of occurrences for a question
(Occ.). Note that a single patch may require the same type of
question multiple times. We find that Q1 is the most common
type of question, where VERIBIN highlights differences
between the original and patched values and asks if these
differences can be considered StA. The second most common
question type is Q4, where VERIBIN detects differences in
the number of function calls between the original and patched
functions. For example, in patch #25, the analyst could know
from the patch description that the patch involves adding a
memset function call, and VERIBIN detects that Fp has an
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additional function call to memset compared to the Fo, the
analyst can assuredly answer Q4 with ‘Yes’. On average, 1.3
questions are asked per patch. Based on the authors’ experience
in determining the answers for each question, we estimated that
each question takes around 10 minutes for an analyst to answer.
On average, the total human effort for adaptive verification
is estimated to be approximately 15 minutes per patch.

Notably, when considering semantically equivalent changes,
we observed that 50 out of 86 (58%) patches are deemed StA
in GT_Analyst (i.e., whether a security analyst would consider
a patch StA in scenarios involving semantically equivalent
changes), whereas in GT_Strict, only 32 of 86 (37%) patches
strictly adhere to the StA properties. Remarkably, as shown
in Table V, in E2, the accuracy remains consistent at 93.0%,
mirroring the performance in E1, as VERIBIN effectively
identifies patch-introduced changes. For the additional 18
StA patches, VERIBIN properly interacts with the analyst,
correctly identifying semantically equivalent changes as equal.
In Section VIII, we provide a case study showing a concrete
example of questions asked to the analyst.

E. Comparison with source-level technique SPIDER

In this subsection, we compare VERIBIN with SPIDER [51],
a state-of-the-art source-level patch verification tool. SPIDER
verifies patches by comparing the source code of the original
and patched versions of a program. To ensure a fair comparison,
we run VERIBIN on the un-stripped dataset (D1, D2, D3)
and provide SPIDER with the corresponding source-level
differences, evaluating their applicability and correctness.

SPIDER shares similar StA definitions with VERIBIN, but
it does not check each StA property as VERIBIN does. Since
SPIDER only provides StA or non-StA results without detailed
information about the patch-introduced changes, we limited
our comparison to these binary outcomes, disregarding the
detailed StA properties. Additionally, SPIDER hooks certain
library functions (i.e., strcpy, strncpy, strlcpy, memcpy)
and execute them in a pre-defined manner to ignore them
as additional function calls. Therefore, we compare SPIDER
results using a slightly different ground truth, GT_SPIDER,
which is based on GT_Strict but modified 4 results to align
with SPIDER’s definition and implementation of StA.

Among the 125 patches from D1, D2, and D3, SPIDER
supports 79 patches (63.2%), and correctly classifies 49 patches
according to GT_SPIDER, with 62.0% ACC and 27.9% FPR. In
contrast, VERIBIN supports 86 patches (68.8%), and correctly
classifies 83 patches according to GT_Strict, with 96.5% ACC
and 0% FPR. For 33 patches, both SPIDER and VERIBIN have
correct results. We provide detailed results in Appendix C.

The differences in applicability and correctness between the
tools can be attributed to their respective analysis levels and
inherent limitations. SPIDER, being a source-level tool, can
directly analyze the source code, making it more suitable for
patches where VERIBIN encounters timeouts or memory limits.
However, SPIDER also fails on some patches due to limitations
in source-level analysis, such as file type restrictions and
difficulties in identifying patch-affected functions. Regarding
correctness, SPIDER’s failures stem from issues like incorrect
detection of error-handling basic blocks, variable type differ-
ences, and ignoring extra function calls in error-handling blocks.
These limitations were confirmed by the authors of SPIDER.

Overall, while source-level tools like SPIDER offer better
applicability theoretically, they have practical limitations. In
obfuscated scenarios, such as the XZ Utils backdoor where
SPIDER cannot detect the patch-affected functions, binary-level
tools like VERIBIN provide a more reliable solution.

VIII. CASE STUDIES

We now present four interesting case studies to demonstrate
the effectiveness of VERIBIN in detecting StA patches.

1 int64 crc64_resolve(void){
2 ... # variables initialization
3 - __asm {cpuid}
4 - if (_RAX){
5 - __asm {cpuid}
6 - if ((∼_RCX & 0x80202) == 0)
7 + v0 = __get_cpuid(1, v2, v3, &v4, v5, v6);
8 + if (v0){
9 + if ((∼v4 & 0x80202) == 0)

10 return &crc64_arch_optimized;
11 }
12 return &crc64_generic;
13 }

Listing 3: Simplified pseudocode of the malicious modifications
in XZ Utils, created by comparing decompiled code from version
5.5.2beta and version 5.6.0 of liblzma.so. In version 5.6.0, the
original cpuid instruction is replaced with a call to a compromised
__get_cpuid function. Note that these modifications are not directly
visible in the source code.
CVE-2024-3094 (XZ Utils backdoor). To demonstrate the
effectiveness of VERIBIN in detecting real-world malicious
patches, we applied it to analyze a binary affected by the
recently discovered backdoor [10] in the XZ Utils package [6].
This backdoor was introduced in XZ Utils by modifying
the build process of the liblzma library. Specifically, during
compilation, an obfuscated script added to the compilation
pipeline modifies the original source code, so that in the
symbol resolution functions crc64_resolve, the assembly
instruction cpuid is replaced by a function call to the malicious
__get_cpuid function (as shown in Listing 3).

VERIBIN can easily detect this malicious update by com-
paring the crc64_resolve function across two versions of li-
blzma.so: version 5.5.2beta (the last non-compromised version)
and version 5.6.0 (the first version containing the malicious
code) 2. In particular, VERIBIN detects an additional func-
tion call (__get_cpuid) in the malicious version, invalidating
condition P4. Additionally, this modification alters how the
function’s return value is computed, invalidating condition P3.
For these reasons, the patch is flagged as non-StA. These
observations align with the underlying mechanics of the
backdoor, demonstrating VERIBIN’s effectiveness in identifying
and flagging non-StA patches.

We note that this backdoor highlights the need to employ
verification of patches at the binary level for security-relevant
projects, even when their source code is available. In fact,
this backdoor cannot be easily detected by analyzing the
source-code-level differences between version 5.5.2beta and
version 5.6.0 of liblzma, due to the usage of obfuscation and
the fact that the malicious modifications change the package’s
compilation pipeline, rather than its source code. For this reason,
we envision the usage of VERIBIN as part of a verification
pipeline in which in every new version of a security-critical

2crc64_resolve is the function for which BinDiff returns the lowest
similarity score when comparing the two versions of liblzma.
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software package, the newly generated binary is compared
with the binary of the previous version. If a modified function
is detected as non-StA, an operator can be notified with the
detected differences to verify whether or not they are expected.

1 int encrypt(...){
2 EVP_CIPHER_CTX ∗ctx; ...
3 - if(1!=EVP_EncryptInit_ex(ctx,EVP_des_ede3_cbc(),NULL,key,iv))
4 + if(1!=EVP_EncryptInit_ex(ctx,EVP_aes_256_cbc(),NULL,key,iv))
5 { handleErrors(); ... }
6 ...
7 }

Listing 4: Challenge 05 Patch (D2, #46), where an insecure
cryptographic function (3DES) is replaced with a more secure version
(AES), maintaining the same semantics.

Challenge 05 (D2, #46). Listing 4 illustrates the source
code of a patch to a C-based program designed to run on
a BeagleBone Black board [2]. This program encrypts log
messages before publishing them on a CAN bus. The patch
exemplifies the typical scenario in which a program is patched
to replace an insecure cryptographic function (3DES) with a
more secure version (AES), maintaining the same semantics. As
such, the patch cannot be considered as StA according to our
definition. However, it is reasonable to assume that an analyst
can consider the 3DES cryptographic function as equivalent to
the AES one. In this scenario, it is possible to use VERIBIN’s
adaptive verification to ask the analyst to provide information
regarding the semantic equivalence of 3DES and AES, and
use the provided information to augment the analysis.

When verifying this patch, the EVP_des_ede3_cbc function
does not automatically match with the EVP_aes_256_cbc
function. For this reason, VERIBIN seeks help from the
analyst and asks whether these two functions are considered
semantically equivalent. If the analyst answers “yes”, VERIBIN
considers the two functions equivalent when verifying P1-P4.
Consequently, it determines that P1 to P4 hold, indicating that,
under the provided assumptions, this patch is StA.

1 ...
2 - if (... && !(nmemb && size))
3 + if (... && nmemb && size)
4 return AVERROR(ENOMEM);
5 return 0;

Listing 5: Patch for CVE-2013-4265 (D3, #78) that enlarges the
input space, showcasing a non-StA patch accurately identified as
non-StA by VERIBIN.

CVE-2013-4265 (D3, #78). Listing 5 shows a simplified
version of the source code associated with this patch. Before the
patch, the function would return an error if either nmemb or size
was non-zero. Post-patch, it returns an error only when both
nmemb and size are non-zero. Essentially, the patch turns certain
Error-handling Exit Paths (EEPs) to Valid Exit Paths (VEPs),
thereby expanding the input space where P1 (non-increasing
input space), is expected to fail. VERIBIN correctly detects
that the value corresponding to AVERROR(ENOMEM) is an invalid
return value, subsequently filtering out EEPs and confirming
the failure of P1. This is an illustrative example of a non-StA
patch that gets correctly identified as non-StA by VERIBIN.
Dillo-png.203-feh (D1, #8). Listing 6 shows the source code of
the patch and part of the patched binary, which exemplifies how
VERIBIN handles Compiler-Introduced Offset Change (CIOC).
This patch adds a check to the product of png_ptr->height and

1 //Source code
2 void png_handle_IHDR(png_structp png_ptr, ...){
3 png_byte buf[13]; png_uint_32 width; ...
4 width = png_get_uint_31(png_ptr, buf);
5 png_ptr−>width = width; ...
6 + if (!((png_ptr->height * png_ptr->width » 32) <= 0
7 + && (png_ptr->height * png_ptr->width))<= 536870911)){
8 + exit(-1);}
9 ... }

10
11 //Assembly code
12 ...
13 - sub rsp, 0x78
14 + sub rsp, 0x88
15 ...
16 lea rsi, [rsp + 0x30] ; original: rsi = rsp - 0x48
17 ; patched: rsi = rsp - 0x58
18 mov rdi, rbx ; rdi = png_ptr
19 call 0x404830 ; png_get_unit_31(png_ptr, buf)
20 mov [rbx + 0x1c8], rfax ; png_ptr->width = width
21 ...

Listing 6: Simplified dillo-png.203-feh Patch (D1, #8), which
exemplifies how VERIBIN handles Compiler-Introduced Offset
Changes (CIOCs).

png_ptr->width, which represents the size of the processed
PNG file. At the source code level, this patch only affects P1,
and it is StA since it decreases the function’s input space. How-
ever, at the binary level, the compiler increases the stack size
from 0x78 to 0x88, changing the offsets of stack variables. For
instance, buf is located at rsp - 0x48 in Fo but at rsp - 0x58
in Fp, which affects the arguments and return values in function
calls. VERIBIN detects this CIOC using the structural position
correlation method, and correctly determines this patch as StA.

IX. LIMITATIONS AND FUTURE WORK

In this section, we discuss VERIBIN’s limitations on
soundness, scalability, and detection capabilities, followed by
potential future directions for improvement.

A. Soundness

Unsoundness from inaccurate function information recovery.
As VERIBIN relies on several existing tools (e.g., BinDiff, IDA
PRO, angr, etc.) to analyze binaries, it inherits their limitations
and imprecisions. Specifically, we collect matching function
information from BinDiff, and we collect function prototypes
using a combination of IDA PRO and angr; finally, we recover
function CFGs using angr. These tools may not always
provide accurate information, leading to potential inaccuracies
in the analysis, especially in stripped binaries. Inaccuracies,
including mismatching between functions, missing or wrong
function prototypes, and incorrect function CFGs can lead
to potential false positives and negatives. For example, if the
recovered CFGs do not contain some basic blocks of a function,
the tool will not be able to detect the patch-induced changes
in those blocks, leading to a potential false positive. As a
mitigation, we provide analysts with the option to manually
adjust the automatically generated information regarding the
analyzed functions. A potential direction for future work would
be to investigate the application of advanced machine learning
algorithms and deep learning frameworks [43], to enhance the
extraction of function information from stripped binaries.
Unsoundness due to heuristics. A potential source of
unsoundness in VERIBIN is the reliance on heuristics to
identify Error-handling Exit Paths (in Section V-C) and
identify Compiler-Introduced Offset Changes (in Section V-D1).
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However, these heuristics may not yield perfect results for all
patches. In an extreme case when all the paths are considered
as EEPs, the StA properties check will not be able to detect
any differences between the original and patched binaries,
leading to potential false positives. As a mitigation, we allow
analysts to manually modify information about EEPs in
the analysis configuration file. The development of a more
advanced and sophisticated detection mechanism for EEP and
CIOC can be a prospective direction for future research.
Unsoundness due to coverage. Another source of unsoundness
in VERIBIN is the coverage issue. When symbolic execution
fails to reach the basic block where patch-induced changes
have been applied, either because it does not fully unroll a
loop or because the reaching constraint is not satisfiable, our
tool may subsequently fail to detect the discernible differences,
potentially resulting in false positive results. To mitigate this,
VERIBIN issues warnings for unvisited basic blocks modified
by patches, which helps alert analysts to potential areas where
the symbolic execution did not achieve full coverage.

B. Scalibility

As a binary-level tool utilizing symbolic execution and
SMT solvers, VERIBIN faces inherent limitations related to
these technologies. In our dataset of 125 patches, we excluded
14 patches due to timeouts and 21 patches due to memory
exceedances. Upon investigation, we find that all the excluded
timeout cases are due to symbolic execution, a prerequisite
process preceding the StA properties check, and the memory
exceedances are caused by both symbolic execution and the
SMT solver. We notice that both the timeout and memory
exceedances are due to the complexity of the function rather
than the patch itself. Symbolic execution struggles with
the exponential number of paths, leading to path explosion
and subsequent timeouts and memory exhaustion. Similarly,
the SMT solver is restricted by computational limitations,
especially when handling non-linear mathematical constraints
or when solving complex constraints emerging from a
great number of paths in symbolic execution. To address
these limitations, future developments for VERIBIN aim to
implement more sophisticated path-pruning strategies and
explore the efficacy of an abstraction-refinement approach [17].
These strategies are intended to filter out irrelevant paths and
reduce the number of paths to be analyzed, thereby mitigating
the issues of timeouts and memory exceedances.

C. Detection Capability

Our definition of StA patches focuses on ensuring that the
patch does not break the existing functionality. However, this
definition is not exhaustive, as it does not verify whether a
patch addresses the vulnerability it was intended to fix. The
limitation means that while a patch may be considered StA
(i.e., functionality-preserving) based on our current criteria,
it may not necessarily resolve the underlying security issue.
Additionally, our current approach does not consider the
runtime characteristics such as time and space overhead, which
are crucial in safety-critical applications like RTOS firmware
for embedded systems, where strict execution deadlines must
be met. While we have demonstrated that VERIBIN can analyze
a wide variety of patches, it is affected by scalability issues

that hinder its ability to analyze some patches, especially those
affecting large functions. Additionally, coverage issues can
prevent it from fully exploring the paths affected by patches.

To enhance the thoroughness of patch analysis, one future
direction is to combine VERIBIN with directed fuzzing
techniques. Directed fuzzing [40], [42] can target specific
parts of the code, such as those affected by patches, and can
help in identifying whether the intended vulnerability has
been effectively mitigated.

X. RELATED WORK

Patch Analysis. Patch analysis [16], [61] has received much
attention in the past decade with the rise of supply chain
attacks [62]. Researchers have proposed techniques to analyze
patches to identify vulnerability-contributing changes [66],
understand the underlying software’s evolution [18], [22],
[37], [67], [72], link patches with bug reports [80], [88],
search for patch applicability [13], [41], etc. VCCFinder [66]
uses the code metrics and patch features (e.g., keywords in
commits) to identify patches that introduce vulnerabilities.
ReDeBug [41] normalizes a given patch at its Abstract Syntax
Tree (AST) level and uses it to identify other code fragments
where the patch is applicable. Similarly, PatchScout [74] and
TRACER [81] use various syntax-level features to rank patches
according to their applicability to a given vulnerability report.
SID [79] uses a set of symbolic patterns to identify patches
that fix security vulnerabilities, while another similar work [39]
identifies security patches in adjacent binary versions, by
combining code property graphs analysis and language model-
based analysis of instruction semantics. These patterns are
designed based on the domain knowledge of security patches.

SPIDER [51], proposed by Machiry et al., formalizes the
idea of Safe to Apply (StA) patches — patches that do not
break the existing functionality. However, differently from
VERIBIN, SPIDER requires the source code of the patched
program and aims to be completely automated, accepting no
human input, which leads to a failure to detect many (45%)
security patches that are StA. In contrast, VERIBIN aims to
prove that a patch is StA and adapts to analyst’s feedback for
cases that are hard to prove automatically.

Finally, most of the existing techniques [14], [19], [23],
[51], [53], [70], [79], [80] work on source-level patches and
use other patch metadata, such as the number of lines and
commit message [72]. These techniques exploit source-level
information. For instance, SPIDER uses AST matching to
identify the statements and variables that are affected by the
patch and focuses its verification on these variables. Similarly,
the techniques used in SID assume the existence of symbolic
expressions involving source variables. There are hybrid
techniques, such as FIBER [83] and EFIBER [85], that use
source-level information on binaries. These techniques use the
source-level patch to get a binary-level signature, which can
be used to test for the existence of the corresponding patch
in other binaries. Conversely, our work does not assume the
availability of source code and directly uses program binaries
to identify the semantic differences between them.
Sementics Equivalence Checking. Semantic equivalence
checking has been an active area of research. Regarding
checking semantic equivalence at the source code level, these
techniques can be broadly categorized into static and dynamic,
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each addressing specific challenges. Early static analysis ap-
proaches such as SYMDIFF by Lahiri et al. [46] offer language-
agnostic solutions using the Boogie intermediate language, but
it requires complex user-provided specifications that match
variables between the functions under comparison. Subsequent
works focus on enhancing scalability and usability. For example,
Malik et al.’s DIFFKEMP [52] checks the preservation of
semantics of refactored code of large C projects, while Wang
et al.’s Last Diff Analyzer [78] expands support to multiple
languages, specifically Go and Java. A recent advancement in
this area is ARDiff by Badihi et al. [17], which utilizes iterative
abstraction and refinement to scale equivalence checking for
syntactically similar programs. Complementing these static
approaches, dynamic analysis approaches like Churchill et al.’s
semantic program alignment technique [27] utilize execution
traces to offer in-depth behavioral insights, however, it relies
on comprehensive test cases provided by users.

Researchers have also developed techniques that directly
check equivalence at the assembly or binary level. Lim and
Nagarakatte’s CASM-VERIFY [49], focusing on verifying cryp-
tographic algorithm equivalence, translates the assembly into
an internal domain-specific language for efficient equivalence
checking. However, CASM-VERIFY requires manually crafted
specifications of equivalent variables and its scope is limited to
x86 instructions. Ming et al. introduced BinSim [57], a trace-
based semantic binary diffing tool employing system call sliced
segment equivalence checking. While effective for obfuscated
binaries, BinSim’s reliance on dynamic analysis requires the
execution of both binaries under comparison, which may be
impractical. Zou et al. introduced D-Helix [90], a generic
decompiler testing framework that uses symbolic differentiation
to detect semantic differences between the original binary and
the recompiled decompiled output. While D-Helix effectively
identifies decompiler inaccuracies, it focuses on testing decom-
pilers rather than general-purpose binary equivalence checking
and lacks the adaptive analysis approach that our tool provides.

Our work, VERIBIN, addresses these limitations by
employing symbolic execution directly on binaries, and it
focuses on verifying StA properties. We use SMT solvers
to confirm equivalence for valid execution paths, ensuring
functionality-preserving differences without relying on test
cases or source code. Furthermore, VERIBIN offers adaptive
verification to handle semantically equivalent changes that
may violate the StA properties, addressing a gap in existing
binary-level equivalence-checking techniques.
Binary Similarity. The problem of comparing a pair of binaries
or, in general, binary similarity [38], has been explored before.
BinHunt [36] uses graph isomorphism at the CFG level to iden-
tify differences between two binaries. APEG [21] computes the
weakest pre-condition between a binary and its patched version
to automatically identify the patched security issue and generate
an exploit for it. Several machine learning-based approaches
have also been developed to identify similar binaries [30], [33],
[54], [73]. There are also dynamic analysis techniques [34],
[76] that compare binaries based on their runtime character-
istics, such as system call traces [20], [57], memory access
patterns [86]. Our work is orthogonal to these approaches, as
we focus on providing a more precise analysis of the impact of
the patch-introduced observable behaviors, rather than a general
binary similarity analysis. VERIBIN aims to formally prove

certain StA properties of a patch using analysts’ assistance
when required. To this end, we use under-constrained symbolic
execution (uc-symex) [68] to execute the original and patched
function pairs, during which we verify our StA properties.

XI. CONCLUSION

This paper presents VERIBIN, a system capable of
comparing a binary with its patched version to determine
whether the patch is “Safe to Apply”, i.e., it does not introduce
any modification that could potentially break the functionality
of the original binary. Performing this binary-level analysis is
challenging as it requires dealing both with scalability issues
and the absence of semantic information, which is removed
during the binary’s compilation. Nevertheless, for unstripped
binaries, our evaluation of 86 samples shows how VERIBIN
yields an accuracy of 93.0% with 0% FPR in accurately
characterizing patch behaviors, and a conservative accuracy of
66.7% with an FPR of 0% if considering timeout and memory
exceeded cases as FN. For stripped binaries, VERIBIN achieves
an accuracy of 89.4% with 0% FPR. Notably, this high level of
accuracy demands only minimal configuration effort on the part
of a human analyst. These results show how VERIBIN can be
used effectively to automatically vet patched binaries provided
by third parties, thereby speeding up patch deployment.
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APPENDIX A
ABLATION STUDY

TABLE VII: Ablation Study Results: Impact of MPP and CIOC.
Experiment ACC (%) FPR (%) Avg.Ta (s) Avg.Tc.D (s)
E1: MPP + CIOC 93.0 0.0 1,293.82 47.13
E3: No MPP + CIOC 93.0 0.0 1,300.46 194.28
E4: MPP + No CIOC 81.4 0.0 1,188.31 46.16

Metrics: ACC = Accuracy; FPR = False Positive Rate; Avg. Ta = Av-
erage time for VERIBIN to finish, excluding preprocessing; Avg. Tc.D
= Average time for verifying StA properties in divisible cases only.
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As mentioned earlier in Section VII, we conduct an ablation
study to measure the contribution of MPPs and CIOCs on
unstripped datasets. On average, using MPPs improved the
verification time by 75%, while using CIOCs improved the
accuracy by 12%. Table VII summarizes the results of our
ablation study for MPP and CIOC. A detailed result table
containing the individual patch outcomes can be found in our
GitHub repository [11].

In this study, we compare the results that VERIBIN achieves
in its baseline configuration (E1), with the results obtained
in the following two configurations (E3 and E4):
Optimization for divisible functions (E3). Recall that in
Section V-D we discuss divisible and indivisible functions
and the possibility of directly comparing all MPPs when the
functions are divisible. To quantify the advantages given by
comparing MPPs in divisible functions, in E3, we disable
this optimization and let VERIBIN merge all the paths without
attempting to find MPPs.

According to the data presented in Table VII, using
configuration E3, the accuracy remains the same, which
means the strategies used by VERIBIN for divisible and
indivisible functions are equivalent. However, overall, using
MPPs detection makes VERIBIN faster for divisible cases,
as the average time for divisible cases improves 75% from
194.28 seconds (in E3) to 47.13 seconds (in E1).

The benefit of using this strategy is particularly significant
in a few specific samples, such as patch #67 (for which using
MPPs detection saves 30 minutes of checking time). We also
notice there are cases when the run time in E1 is greater than
that in E3. Primarily, this happens because VERIBIN attempts
to find MPPs for 10 minutes. Therefore, in the cases where
the functions are indivisible, finding MPPs will fail, and 10
minutes will be wasted.
Handling Compiler-Introduced Offset Changes (CIOCs)
(E4). Referring to Section V-D1, before comparing two
constraints or values, we identify and filter out CIOCs so that
VERIBIN will not consider these compiler-introduced changes.
To quantify the effectiveness of this step, in E3, we do not
filter out CIOCs before comparing constraints and values.

In Table VII, the ACC dropped from 93.0% (in E1)
to 81.4% (in E4), since VERIBIN incorrectly considered
CIOCs as in-equivalences. We noticed that the total run time
decreased, which happens for two main reasons: (1) We
remove the analysis step for identifying CIOCs, and (2) the
SMT solver generally terminates earlier when vo≡vp is False,
which happens more commonly in E4.

APPENDIX B
EFFECTIVENESS OF EEP DETECTION HEURISTICS.

TABLE VIII: Effectiveness of EEP detection heuristics. Complete
EEP Detection: the number of cases in which the heuristic(s) can
identify all the patch-related EEPs.

Heuristic(s) Complete EEP Detection
A 13 (33.3%)

A + B 26 (71.8%)
A + B + C 32 (82.1%)

Across 86 binaries (D1+D2+D3), we observed 37 cases
(i.e., original and patched binaries) that contain patch-related
EEPs (i.e., the patch either introduces a new EEP or jumps

to an existing EEP). Detecting these EEPs is necessary for
VERIBIN to get accurate outcomes. Our heuristic-based
method (explained in Section V-C) automatically detected
such EEPs in 32 out of 37 cases. Overall, our heuristics
flagged 2,676 EEPs with an 87.9% true positive rate.

Table VIII provides further details about each heuristic’s
contribution. Note that for Heuristic A, we determine the
hyperparameter ratio as 0.8 based on an analysis of a subset
of 20 binaries from D1. During the execution of VERIBIN in
D1, D2, and D3, we keep track of the EEPs identified by each
heuristic. Subsequently, two of the authors manually verify
the accuracy of the detected paths by examining both the
source code and the CFG. We calculate the number of cases in
which the heuristic(s) can identify all the patch-related EEPs
(marked as ‘Complete EEP Detection’). As more heuristics
are combined—from Heuristic A alone to Heuristics A, B,
and C together—the number of complete EEP detections
increases, indicating enhanced coverage.

APPENDIX C
COMPARISON OF APPLICABILITY

AND ACCURACY BETWEEN SPIDER AND VERIBIN

Figure 4 presents a Venn diagram comparing the applicability
and accuracy for patch verification between SPIDER and
VERIBIN, across 125 patches from D1, D2, and D3. SPIDER
supports 79 patches (63.2%), and correctly classifies 49
patches according to GT_SPIDER, with 62.0% ACC and
27.9% FPR. In contrast, VERIBIN supports 86 patches
(68.8%), and correctly classifies 83 patches according to
GT_Strict, with 96.5% ACC and 0% FPR. For 51 patches,
both SPIDER and VERIBIN are able to verify the patches,
with 33 patches correctly classified by both tools.

Total patches: 125

VeriBin
Supports:

86

VeriBin
Same as

GT_Strict: 83

SPIDER Supports: 
79

SPIDER
Same as

GT_SPIDER:
49

VeriBin and
SPIDER, both
are correct: 33

VeriBin and
SPIDER, both

support: 51

Fig. 4: Comparison of applicability and accuracy between SPIDER
and VERIBIN, across 125 patches from D1, D2, and D3.
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